36 research outputs found

    Watch and Learn: Semi-Supervised Learning of Object Detectors from Videos

    Full text link
    We present a semi-supervised approach that localizes multiple unknown object instances in long videos. We start with a handful of labeled boxes and iteratively learn and label hundreds of thousands of object instances. We propose criteria for reliable object detection and tracking for constraining the semi-supervised learning process and minimizing semantic drift. Our approach does not assume exhaustive labeling of each object instance in any single frame, or any explicit annotation of negative data. Working in such a generic setting allow us to tackle multiple object instances in video, many of which are static. In contrast, existing approaches either do not consider multiple object instances per video, or rely heavily on the motion of the objects present. The experiments demonstrate the effectiveness of our approach by evaluating the automatically labeled data on a variety of metrics like quality, coverage (recall), diversity, and relevance to training an object detector.Comment: To appear in CVPR 201

    Cross-stitch Networks for Multi-task Learning

    Full text link
    Multi-task learning in Convolutional Networks has displayed remarkable success in the field of recognition. This success can be largely attributed to learning shared representations from multiple supervisory tasks. However, existing multi-task approaches rely on enumerating multiple network architectures specific to the tasks at hand, that do not generalize. In this paper, we propose a principled approach to learn shared representations in ConvNets using multi-task learning. Specifically, we propose a new sharing unit: "cross-stitch" unit. These units combine the activations from multiple networks and can be trained end-to-end. A network with cross-stitch units can learn an optimal combination of shared and task-specific representations. Our proposed method generalizes across multiple tasks and shows dramatically improved performance over baseline methods for categories with few training examples.Comment: To appear in CVPR 2016 (Spotlight

    Evaluating Text-to-Image Matching using Binary Image Selection (BISON)

    Full text link
    Providing systems the ability to relate linguistic and visual content is one of the hallmarks of computer vision. Tasks such as text-based image retrieval and image captioning were designed to test this ability but come with evaluation measures that have a high variance or are difficult to interpret. We study an alternative task for systems that match text and images: given a text query, the system is asked to select the image that best matches the query from a pair of semantically similar images. The system's accuracy on this Binary Image SelectiON (BISON) task is interpretable, eliminates the reliability problems of retrieval evaluations, and focuses on the system's ability to understand fine-grained visual structure. We gather a BISON dataset that complements the COCO dataset and use it to evaluate modern text-based image retrieval and image captioning systems. Our results provide novel insights into the performance of these systems. The COCO-BISON dataset and corresponding evaluation code are publicly available from \url{http://hexianghu.com/bison/}

    A Simple Recipe for Competitive Low-compute Self supervised Vision Models

    Full text link
    Self-supervised methods in vision have been mostly focused on large architectures as they seem to suffer from a significant performance drop for smaller architectures. In this paper, we propose a simple self-supervised distillation technique that can train high performance low-compute neural networks. Our main insight is that existing joint-embedding based SSL methods can be repurposed for knowledge distillation from a large self-supervised teacher to a small student model. Thus, we call our method Replace one Branch (RoB) as it simply replaces one branch of the joint-embedding training with a large teacher model. RoB is widely applicable to a number of architectures such as small ResNets, MobileNets and ViT, and pretrained models such as DINO, SwAV or iBOT. When pretraining on the ImageNet dataset, RoB yields models that compete with supervised knowledge distillation. When applied to MSN, RoB produces students with strong semi-supervised capabilities. Finally, our best ViT-Tiny models improve over prior SSL state-of-the-art on ImageNet by 2.3%2.3\% and are on par or better than a supervised distilled DeiT on five downstream transfer tasks (iNaturalist, CIFAR, Clevr/Count, Clevr/Dist and Places). We hope RoB enables practical self-supervision at smaller scale

    MonoNeRF: Learning Generalizable NeRFs from Monocular Videos without Camera Pose

    Full text link
    We propose a generalizable neural radiance fields - MonoNeRF, that can be trained on large-scale monocular videos of moving in static scenes without any ground-truth annotations of depth and camera poses. MonoNeRF follows an Autoencoder-based architecture, where the encoder estimates the monocular depth and the camera pose, and the decoder constructs a Multiplane NeRF representation based on the depth encoder feature, and renders the input frames with the estimated camera. The learning is supervised by the reconstruction error. Once the model is learned, it can be applied to multiple applications including depth estimation, camera pose estimation, and single-image novel view synthesis. More qualitative results are available at: https://oasisyang.github.io/mononerf .Comment: ICML 2023 camera ready version. Project page: https://oasisyang.github.io/mononer

    Generating Natural Questions About an Image

    Full text link
    There has been an explosion of work in the vision & language community during the past few years from image captioning to video transcription, and answering questions about images. These tasks have focused on literal descriptions of the image. To move beyond the literal, we choose to explore how questions about an image are often directed at commonsense inference and the abstract events evoked by objects in the image. In this paper, we introduce the novel task of Visual Question Generation (VQG), where the system is tasked with asking a natural and engaging question when shown an image. We provide three datasets which cover a variety of images from object-centric to event-centric, with considerably more abstract training data than provided to state-of-the-art captioning systems thus far. We train and test several generative and retrieval models to tackle the task of VQG. Evaluation results show that while such models ask reasonable questions for a variety of images, there is still a wide gap with human performance which motivates further work on connecting images with commonsense knowledge and pragmatics. Our proposed task offers a new challenge to the community which we hope furthers interest in exploring deeper connections between vision & language.Comment: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistic

    Learning by Asking Questions

    Full text link
    We introduce an interactive learning framework for the development and testing of intelligent visual systems, called learning-by-asking (LBA). We explore LBA in context of the Visual Question Answering (VQA) task. LBA differs from standard VQA training in that most questions are not observed during training time, and the learner must ask questions it wants answers to. Thus, LBA more closely mimics natural learning and has the potential to be more data-efficient than the traditional VQA setting. We present a model that performs LBA on the CLEVR dataset, and show that it automatically discovers an easy-to-hard curriculum when learning interactively from an oracle. Our LBA generated data consistently matches or outperforms the CLEVR train data and is more sample efficient. We also show that our model asks questions that generalize to state-of-the-art VQA models and to novel test time distributions
    corecore